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Executive Summary 

RISKADAPT will provide, in close cooperation with the end-users/other stakeholders, a novel, 
integrated, modular, interoperable, public and free, customisable user-friendly platform 
(PRISKADAPT), to support systemic, risk-informed decisions regarding adaptation to Climate Change 
(CC) induced compound events at the asset level, focusing on the structural system. PRISKADAPT will 
explicitly model dependencies between infrastructures, which, inter alia, will provide a better 
understanding of the nexus between climate hazards and social vulnerabilities and resilience. 
Moreover, this project will identify gaps in data and propose ways to overcome them and advance the 
state of the art of asset level modelling through advanced climate science to predict CC forcing on the 
structure of interest, structural analyses, customised to the specific structure of interest, that consider 
all major CC induced load effects in tandem with material deterioration, novel probabilistic 
environmental Life Cycle Assessment (LCA) and Life Cycle Cost (LCC) of structural adaptation measures 
and a new model to assess climate risk that will combine technical risk assessment with assessment of 
social risks. PRISKADAPT will provide values to a set of indicators for each asset of interest, quantifying 
primary parameters and impacts, in the form of a Model Information System (MIS) that will provide all 
required information for adaptation decisions. PRISKADAPT will be implemented in the case studies in 
the pilots that involve specific assets, however, it will permit customisation with local values of 
parameters and data, so it can be applicable throughout Europe for CC adaptation decisions involving 
assets of similar function, exposed to multiple climate hazards. 

The current report is one of the three deliverables of WP3 “Climate Data, CC Forcing, Multi-Hazard 
Modelling" and corresponds to T3.1: “Climate data for hydrological analyses, wind and rain forcing and 
material degradation. Extreme Value Analyses” of the RISKADAPT project. To meet the aim of this Task, 
in this report the terminology, methods and tools that can be used to perform statistical extreme value 
analysis on climate data are presented. Climate (input) data can mainly come from reanalysis data (like 
ERA5) or from in-situ time series measurements. In addition, and as the focus of this report is on the 
analysis of present climate, i.e., approximate for years 1970-2020, pointers to Copernicus CDS data 
sets and tools are provided that can be used to evaluate risks caused by extreme events for 
infrastructure, especially those that are related to project’s pilots. 
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1. Introduction 

In the RISKADAPT project extreme value distributions are used to study climate data for hydrological 
analyses, wind and rain forcing, and material degradation. Extreme value analyses will be performed 
to the relevant climatic variables and parameters that have been identified in WP2. For the present 
climate, focus is especially on the state-of-the-art C3S CDS reanalysis data and E-OBS in-situ data, both 
available from the C3S CDS. The next deliverable, D3.3, will focus more on the future climate and the 
effect of climate change on extreme values. For the CC data, the focus will be on the regional CORDEX 
data as well as on the most recent global climate projection data CMIP6. In WP3 Task 3.1, Bayesian 
hierarchical approach to extreme value analysis will be applied, allowing us to account for spatial and 
temporal dependencies on the variables and to study the temporal evolution of the distributional 
parameters. 

1.1 Purpose of the deliverable  

The purpose of this Deliverable is to describe the available sources of climate data that can be used as 
input for extreme value analysis. In doing this, the statistical analysis that can be performed to monthly 
or yearly maxima of quantities of interest is described; the difficulties in obtaining the data as well the 
adequacy of available reanalysis data sets in terms of spatial and temporal resolution are explained; 
and the need for further downscaling of results is also discussed. 

The objectives related to this deliverable have been achieved, however there was a two-month delay 
in submitting the deliverable. This was mostly due to not being able to formulate the needs of the 
partners in terms of extreme value analyses. This is still a work in progress in the time of writing this 
proposal. 

1.2 Structure of the deliverable 

The Deliverable has been structured as follows: 

Chapter 1. Describes the aim of the RISKADAPT project as well as the purpose, the intended audience 
and the structure of this document.  

Chapter 2.  Describes extreme value analysis and data sources relevant to RISKADAPT project. There 
are three Python notebooks included in the Annexes that provide examples of analyses 
that are possible with the current data sources. 

Chapter 3. Summarises the main outcomes of this Deliverable and outlines the future work. 

1.3 Intended audience 

As the dissemination level of this Deliverable is public, it will be openly available to all RISKADAPT 
partners, as well as other stakeholders, such as public authorities, infrastructure owners and 
operators, researchers and technology providers, interested in a report that presents the basic 
terminology related to extreme value analysis. 
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2. Extreme values and climate 

2.1 Introduction  

Extreme weather can mean weather phenomena that are rare in climatological sense. For example, if 
the average return period of occurrence is more than 30 years. Or it can mean weather events that 
causes extreme damage, like heavy rain, wildfires, or heat waves, even if they are not rare in statistical 
sense. In this report, we concentrate on climatological features of weather-related variables, mostly 
for temperature, wind speed and precipitation, as they are relevant in RISKADAPT project’s pilots and 
other tasks. One special quantity of interest is icing, that is target of Task 4.4 in WP4 as well as of Pilot 
2. As there are not enough direct observational icing data, we need to use icing models. These models 
take as input several weather variables, such as temperature and the amount of liquid water in the 
clouds. The different approaches to study extreme icing will be discussed in more detail below. 

The previous deliverable D3.1 for RISKADAPT WP3 described different sources of EO data that can be 
used in the analyses of the project. The main data sources were the Copernicus Climate Data Store 
(CDS): ERA5 reanalysis, E-OBS observation analysis, and CMIP6 regional climate model runs. Other 
important sources mentioned were the GEOSS Global Earth Observation System of Systems as well as 
data from national and regional weather institutes that provide open access to their data, both to 
observations and model output. For extreme value analysis, we will be utilizing the same sources and 
provide examples on how specific questions can be answered based on the available data. We provide 
Python code for downloading the data and calculating return periods for quantities of interest based 
on statistical extreme value theory. 

2.2 Statistical extreme value analysis 

Statistical extreme value theory is based on the fact that the maximum value in a set of random 
numbers follows, under quite general assumptions, a distribution called generalised extreme value 
distribution, GEV. The same applies to the minimum with a change of variables. When we know the 
statistical distribution of the phenomena of interest, we can draw inference on the occurrence 
probabilities and risks related to the event. In extreme value terminology, the things of interest are 
called return periods and return levels. These are defined shortly below. 

In specific the classical extreme value theory is described as it is typically used in climate science in 
addition to the use of Bayesian terminology and methods, which allows to discuss the relevance of 
prior information about model parameters and their correlation. Standard reference to statistical 
extreme value theory is by Coles (2001). Some other relevant literature on extreme value analysis of 
climate include works by AghaKouchak (2011) and Hamdi (2021). 

The cumulative distribution function of GEV can be written with the help of three parameters, location 
𝜇, scale 𝜎, and shape 𝜉 as 

𝐺(𝑦;  𝜇, 𝜎, 𝜉) = exp (− [1 + 𝜉 (
𝑦 − 𝜇

𝜎
)]

+

−
1
𝜉

) , (1) 

where y is the quantity of interest, such as yearly maximum temperature, 𝜇, 𝜎, and 𝜉 are the model 
parameters and subindex + means taking maximum with zero. This equation directly leads to quantiles 
of the distribution as 

𝑦𝑝 =  {
𝜇 −

𝜎

𝜇
[1 − {− log(1 − 𝑝)}−𝜉],  for 𝜉 ≠ 0,

𝜇 − 𝜎 log{1 − log(1 − 𝑝)} ,  for 𝜉 = 0.
(2) 

This equation is used to calculate the return level 𝑦𝑝 associated with a certain exceedance probability 

𝑝 or equivalently, the return period 𝑇 = 1/𝑝. 
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There are several approaches to estimate GEV distribution parameters given time series of occurrences 
of the quantity of interest. In the most basic cases we are assuming a stationary situation, where a set 
of fixed values of the parameters (𝜇, 𝜎, and 𝜉) would explain the behaviour of the phenomena in a 
given geographical location. If this is the case, the equation (2) would directly give return levels 
corresponding to given return periods. For the estimation of parameters, we assume having a number 
of independent realizations of the extreme values which can be used to find a specific version of GEV 
that can reproduce the observed values. When an estimate is based on a finite number of 
observations, the estimate will have uncertainty, which is important to quantify for proper use in 
further analyses. Bayesian analysis is a suitable tool for this. We can base the analysis of uncertainties 
to MCMC simulation, which is a computational technique that provides samples from Bayesian 
uncertainty distributions of model parameters and model derived quantities. 

As an example, let’s consider IDF curves for precipitation. They are standard tools for managing rainfall 
data in environmental engineering. The curves show rainfall intensities and durations for given return 
period frequencies. IDF curves are location-specific, meaning that they need to be developed for each 
specific geographic area based on local rainfall data. They are a valuable tool for assessing and 
managing the risks associated with precipitation-related events. An example of calculating IDF curves 
from the precipitation extremes is provided below. Figure 1 shows IDF curves for Haliacmon river 
drainage basing calculated using GPEX data. These curves can be used in hydrological analysis related 
to Pilot 1. 

 

Figure 1. IDF curves that provide information on return periods of precipitation events of different intensity and duration. 
The data is averaged over the Haliacmon river drainage basin. 

2.3 Climate variables 

To analyse risks on the infrastructure, the effects of weather need to be considered. For example, 
when building near shore, one must account for the maximum water levels and since this will depend 
on random external events as well as on changes in the future climate, it is needed to think in terms 
of probabilities and risks. 

Extreme weather events, such as extreme temperature or precipitation, are becoming the dominant 
factor in the causes of disasters that affect the safety of critical assets, like buildings and bridges, with 
long life span. Climate change will alter the frequency and effect of these phenomena, and it is 
important to be able to quantify the expected changes in risks and integrate climate change aspects 
into the adaptation planning process of existing structures and in the planning process of new 
structures.  

In the RISKADAPT project, special attention is given to those climatic variables that affect critical 
infrastructure.  The project pilots target bridges and buildings that are affected by heavy winds and 
rainfall. In addition, Pilot 2 studies the effect of icing on the energy transmission lines in northern 
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countries. This means that variables of interest will be related to temperature, wind, precipitation, and 
river discharges, as well as those needed in modelling of ice formation, such as cloud water content. 

2.4 Available data 

The data sources that are utilized were described in deliverable D3.1. These sources include data 
available from Copernicus services, data provided from previous research projects, and various sources 
of in-situ time series. Historical reanalyses are useful as they provide complete, both time and space, 
reconstruction of the climate1. The drawback is that the resolution can be quite sparse. For example, 
ERA5 is delivered in spatial resolution of 0.25° (about 30 km), and ERA5 Land and E-OBS in 0.1°. In-situ 
or remote sensing observation archives give more accurate representation at a specific location, but 
they are spatially and temporally sparse. As an example of the effect of resolution, shows the location 
of Cattinara Hospital in Trieste, Italy (Pilot 3), with data pixels from four different reanalysis data sets. 
The colouring shows whether the pixel is considered land or sea by the data. 

There are some specific high-resolution data sets available from separate previous studies. For 
example, Pirinen (2022) provide 1 km x 1 km resolution daily gridded evapotranspiration dataset 
covering Finland over the 40-year period 1981–2020 that is based on in-situ rain gauge observations 
which are spatially interpolated using Kriging method.  

Figure 2. Location of Cattinara Hospital in Trieste, Italy within four different data sets. The darkest colour means land 
pixel, lightest is sea, while some pixels are considered as being in-between by the data set’s land-sea-mask. 

For climatic extreme values there are some previous projects that provide data openly for use. One 
example is GPEX data set (Gründemann, et al. 2023), which contains global extreme precipitation 
return levels. The data is available for download, and it has precipitation levels for several precipitation 
durations and return periods ranging from 2 years to 1000 years. From this data set, one can extract 
the area of interest, such as the Heliacmon river drainage basin ( 

 

 

 

 

 
1 https://www.ecmwf.int/en/about/media-centre/focus/2023/fact-sheet-reanalysis 
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Figure 3) that is used in Pilot 1 of RISKADAPT for studying return times of extreme precipitations events 
for hydrological analysis. In Figure 1 above, intensity-duration-frequency (IDF) curves calculated using 
the precipitation extremes in the GPEX data set and averaging the results over pixels that cover the 
drainage area were presented. 

 

 

 

 

 

 

 

 

Figure 3. Haliacmon river drainage basin that is used in RISKADAPT Pilot 1. 

The GMEX data is produced using climate data from the GloH2O project (https://www.gloh2o.org), 
which provides high-resolution, bias-corrected weather data for the past, present, and future. They 
have several interesting data sets, such as regionalized parameter maps for the conceptual 
hydrological model HBV covering the entire land surface (https://www.gloh2o.org/hbv/). These will 
be useful for the hydrological analysis tasks in the RISKADAPT project. 

 

2.4.1 Downscaling 

Most climate reanalysis data are provided in spatial resolution of 10 to 50 km, and in temporal 
resolution typically in hourly intervals. There are very few km-scale reanalysis and the existing ones do 
not usually allow for extreme value analysis of longer return periods. However, in many studies there 
is a need for downscaling the results to finer temporal and spatial scale. In RISKADAPT the need for 
going from kilometer scale to even meter scale comes from the study of climate effects on individual 
constructions, such as buildings, bridges, or power transmission towers. For this reason, special 
methods are needed. But when the simulation results have been obtained, the statistical analysis for 
return periods is essentially the same. 

If meter-scale analysis of wind fields is needed, one approach is based on performing small scale 
simulation runs with meteorological large-eddy simulation (LES) models, such as PALM (Maronga, 
2015). These can be based on larger scale mean wind fields which are rescaled when studying the 
effect of extreme wind events on local scale. For additional informaSee the work by Hellsten (2021) 
and the PANOPTIS EU project2. 

 

2.4.2 Icing 

 
2 http://www.panoptis.eu/ 

https://www.gloh2o.org/
https://www.gloh2o.org/hbv/
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RISKADAPT Pilot 2 and Task 4.4 consider the effect of atmospheric icing and especially ice formation 
on electric power lines. For this, a specific icing model is needed that can calculate the accumulation 
of ice on a surface based on variables that are available from numerical weather prediction models, 
climate model runs or from historical reanalyses. Herein the icing model defined in ISO 12494 
(Makkonen, 2000) is used that is modified for climate model output. The model produces time series 
of accretion of rime ice on a cylinder based on cloud liquid water content, temperature, pressure, and 
wind speed. For proper analysis, one needs to decide what are the icing events, for example in units 
of g/h, that are of interest. Is the interest in the amount of icing, on the length of icing periods, and so 
on. Is the information on the maximum yearly amount of passive ice formation and its possible trend 
due climate change enough or do we need analysis of finer details. These details need to be decided 
before doing further analysis. In addition, the combined effect of icing and wind will be studied. 

2.4.3 Obtaining and storing the data 

Another challenge in extreme value analysis of climatic variables is that although many services can 
provide readily computed monthly means, they are not providing monthly maxima. For this reason, 
one might need to download or somehow access the whole data in the original temporal resolution 
and then extract the statistics needed. For hourly resolution and several decades, this will result to 
very large data files. For analysis on high resolution data on the CDS archive, part of the data collection 
can be done using the CDS Toolbox3, which saves from downloading large amounts of data. CDS has 
some useful pre-made applications that can be useful as well.4. They include: 

• Global temperature trend monitor. 

• Daily statistics calculated from ERA5 data. 

• Extreme precipitation statistics for Europe. 

• European hydrology seasonal forecast explorer. 

• European hydrology and climate data explorer. 

However, CDS and the provided CDS Toolbox applications can typically provide only limited amount of 
data at a time. In many cases, the user must download large data sets, extract extreme events of 
interest, and perform statistical analysis, which can be quite time consuming. For this purpose, it will 
be advisable to provide pre-calculated extremes, like monthly maximums of temperature, rain, and 
wind speed, and store them in RISKADAPT data management system, so that these can be easily 
accessed by project partners and by the PRISKADAPT platform that will be made later in the project. 
The use of user-friendly data formats and metadata is important for the usability.  

2.5 Extreme value analysis examples 

In the following some examples on extreme value analysis related to RISKADAPT Tasks are provided. 
Moreover, the Annex lists Python notebooks that describe the use of reanalysis data and the 
calculation of extreme value statistics. The examples concentrate on variables and locations that are 
relevant to the Pilots of the project. The code is available at https://github.com/fmidev/RISKADAPT/.  
The examples are listed in Table 1.  In addition, a set of Python functions that can be used to fit a 
generalized extreme value distribution to a time series data and calculate return levels for given return 
periods is provided. The code uses Stan probabilistic language (https://mc-stan.org) to define the 
statistical model and calculate posterior probabilities for GEV parameters as well as for quantiles of 
the fitted distribution, which in turn can be used to calculate return levels and their uncertainties. The 
estimation is based on Markov chain Monte Carlo (MCMC) sampling. The statistical analysis is similar 

 
3 https://cds.climate.copernicus.eu/cdsapp#!/toolbox 
4 https://cds.climate.copernicus.eu/cdsapp#!/search?type=application 

https://github.com/fmidev/RISKADAPT/
https://mc-stan.org/
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to Räty et al. (2023), which studied maximum water levels for high-risk infrastructure of nuclear power 
plants located by the shore. 

Table 1: Extreme values analysis examples 

Example Variables Data set 
used 

Years reference 

Extreme value 
analysis on ERA5 
data 

t2m, d2m, ws10, tp24 ERA5  1980-2019 GitHub link 

ERA5 Land 
examples 

temperature and wind 
speed 

ERA5 Land 1980-2019 GitHub link 

GPEX data precipitation GPEX 1979-2017 GitHub link 

 

 

2.5.1 ERA5 extreme values 

ERA5 reanalysis data from the Copernicus CDS service is the most comprehensive global reanalysis 
data. It has a large set of climate variables with 0.25 degree spatial and hourly temporal resolution. 
The data start from year 1940 and are continuously updated for present day values. Herein ERA5 is 
used as an example on obtaining extreme value analysis on the past and present climate. For extreme 
values, one is typically interested in maximum or minimum values over a long period, like month or 
year. As the CDS service does not provide these maxima directly, hourly data should be downloaded 
and aggregated values should be calculated locally. Fortunately, the CDS download tools allow for 
downloading limited geographical areas to make the download size smaller. However, it is advisable 
to use already downloaded data when possible. Many institutes store ERA5 and similar reanalysis data 
sets in their local storage systems. It is also possible to use cloud storages, such as Google Cloud or 
Amazon AWS for the analysis tasks. 

In the examples provided, monthly maxima of 2-meter temperature, dew point temperature, wind 
speed in 10 m, and total precipitation in 24 hours are calculated for ERA5 pixels over the European 
domain. This allows us to perform monthly, seasonal, or yearly analysis in selected pixels or over 
aggregated areas. Generalized extreme value distribution can be fitted for the maxima to obtain the 
GEV parameters, which can be used to obtain return level estimates for given return periods. The 
analysis is done using Bayesian framework and by MCMC sampling, which provides predictive 
uncertainty distributions for the quantities of interest. Similar analysis was performed to maximum 
yearly water levels by Räty (2023) and this reference can be used as introduction to the statistical 
analysis and software needed. Figure 4 shows August temperature maxima with an average return 
period of 20 years. The values are shown for four geographical locations. The density histograms show 
the uncertainty related to this estimate obtained from the MCMC simulation. This is important for risk 
management. For example, if one needs 95% certainty on the 20-year maximum August temperature 
at Trieste, one should be prepared for about 37 degrees Celsius. Using Bayesian analysis the risk 
analysis accounts for uncertainty in the estimated extreme value distributions based on limited 
observational evidence and thus making it more realistic. 

https://github.com/fmidev/RISKADAPT/blob/D3.2v1.0/ERA5_extreme_values.ipynb
https://github.com/fmidev/RISKADAPT/blob/D3.2v1.0/ERA5_land_example.ipynb
https://github.com/fmidev/RISKADAPT/blob/D3.2v1.0/GPEX_data.ipynb
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Figure 4. Temperature maxima from ERA5 

 
2.5.2 Accounting for spatial and temporal correlation 

In the provided ERA5 examples the analysis was performed for each spatial location separately. In 
addition, it was assumed that the climate does not change significantly during the period of the data 
used. In statistical terms, we assume stationarity in the distributional properties of the system. 
However, this is not always the case. The climate system is changing and analysis on historical 
observations does not necessarily provide accurate information for future extremes. On the other 
hand, data from one location has information on the behaviour at neighbouring locations. This can be 
used in advantage by pooling information from neighbouring sites and thus reducing uncertainties. An 
additional benefit is in the case of in-situ observations, where pooling can provide information for 
locations that are close to the observation locations.  The aforementioned process was used by Räty 
et al.  (2023), where pooled information on water level gauge stations along Finnish coastlines was 
used. Figure 5 shows the estimated return level curves for yearly to thousand-year return periods. 
Without pooling the information, the uncertainty for rare events would have been much larger. The 
analysis in the paper was motivated by the needs of nuclear power plant safety.  
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Figure 5. Analysis of extreme water level from Räty et al. (2023). Hierarchical statistical model is fitted to parameters of 
GEV distribution. The dots show observed maximum yearly water levels. Solid lines are modelled values from GEV model 
for each 12 stations. 
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3. Conclusions 

This deliverable report provided an overview of extreme value analysis on climate data. We provide 
several examples on extreme value analysis using openly available climate data. There is plenty of 
available data sets that are suitable for analysing extremes in the present climate. However, the spatial 
resolution is not necessarily sufficient for building level analyses performed in RISKADAP project. For 
that, advanced downscaling method might be needed. 
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Annexes 

The following pages contain three examples on obtaining and processing reanalysis data and preparing 
them for extreme value analysis. It also includes Bayesian extreme value analysis for some variables. 
The examples are provided as Python language notebooks that contain the computer code used to 
perform the analysis. The source code is available from GitHub repository at 
https://github.com/fmidev/RISKADAPT/.  The examples were listed in Table 1 and described shortly 
below.  The repository contains extreme value analysis code that can be used to calculate further 
return periods of the quantities of interest. 

ERA5 Land examples 

These examples demonstrate the use of ERA5 Land data from the Copernicus service. It uses two 
locations related to RISKADAPT Pilots: Lake Polyfytos Bridge in Greece and Cattinara Hospital in Italy. 
The demonstration studies one month (August) from year 1980 to 2019 and calculates monthly 
maxima from the provided hourly data. It shows how total precipitation coming from hourly data can 
be accumulated into 24-hour total precipitation for each hour that is more usable for hydrological 
studies. For wind speed, the u and v components of wind are interpolated to a given location and 
transformed to wind speed. 

GPEX data 

This example uses Global Precipitation Extremes dataset GPEX. The data are described in detail in: 
Extreme Precipitation Return Levels for Multiple Durations on a Global Scale (Gründemann et al., 
2021). Herein, data over Haliacmon river drainage basin were used and precipitation return levels for 
several event durations and return periods were extracted based on GEV analysis. In addition, 
Intensity-Duration-Frequency plots were formed over the study area. 

 

  

https://github.com/fmidev/RISKADAPT/
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Annex 1. Extreme value analysis on ERA5 data 

In the following we demonstrate calculations of extreme value analysis for ERA5 variables. Similar 
analysis would be possible to other similar gridded reanalysis data sets. As ERA5 is a quite low 
resolution (0.25°) data set, extremes are bound to be smoothened. For more refined analysis, a higher 
resolution data could be used. For example, ERA5 Land has 0.1° spatial resolution. 

import os 
import warnings 
import calendar 
import numpy as np 
import xarray as xr 
 
import matplotlib.pyplot as plt 
import seaborn as sns 
 
warnings.simplefilter(action='ignore', category=FutureWarning) 
 
DATA = os.path.expanduser('~/DATA/RISKADAPT/') 

Here we assume that we have precalculated monthly maxima of the ERA5 variables of interest. 

era5 = xr.open_dataset(DATA+'ERA5_Europe_monthly_max.nc') 
era5 

<xarray.Dataset> 
Dimensions:    (time: 492, latitude: 187, longitude: 261) 
Coordinates: 
  * latitude   (latitude) float64 72.0 71.75 71.5 71.25 ... 26.0 25.75 25.
5 
  * longitude  (longitude) float64 -25.0 -24.75 -24.5 -24.25 ... 39.5 39.7
5 40.0 
  * time       (time) datetime64[ns] 1979-01-31 1979-02-28 ... 2019-12-31 
Data variables: 
    t2m        (time, latitude, longitude) float32 ... 
    d2m        (time, latitude, longitude) float32 ... 
    ws10       (time, latitude, longitude) float32 ... 
    tp24       (time, latitude, longitude) float32 ... 

Plot the data at the selected lon lat points. 

lon, lat = 25.0, 60.5 
 
fig, axs = plt.subplots(2, 2, figsize=(14, 10)) 
era5['t2m'].interp(latitude=lat, longitude=lon).plot(ax=axs[0,0]) 
era5['d2m'].interp(latitude=lat, longitude=lon).plot(ax=axs[0,1]) 
era5['ws10'].interp(latitude=lat, longitude=lon).plot(ax=axs[1,0]) 
era5['tp24'].interp(latitude=lat, longitude=lon).plot(ax=axs[1,1]) 
for ax in axs.ravel(): 
    ax.grid() 
    ax.set_title('') 
plt.suptitle(f'Monthly maxima in ERA5, lat: {lat}, lon: {lon}') 
plt.show() 
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GEV analysis 

We provide a set of Python functions that to fit a generalized extreme value distribution to a time 
series data and calculate return levels for given return periods. It uses Stan probabilistic language to 
define the statistical model and calculate posterior probabilities for GEV parameters as well as for 
quantiles of the fitted distribution. These can be used to calculate return levels and their uncertainties. 
The estimation is based on Markov chain Monte Carlo (MCMC) sampling. 

import cmdstan_gev as stangev 
 
# select one location and one month 
lat = 60.2 
lon = 24.9 
month = 4 
 
months = era5['time.month'] 
y = era5['t2m'].where(months==month, drop=True).interp(latitude=lat, longi
tude=lon) - 273.15 
 
y.plot(marker='o') 
plt.grid() 
plt.show() 
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fit = stangev.gev_fit(y, hyper={'xi0': -0.3, 'xisig0': 0.2, 'sig0': 3.5}, 
                      adapt_delta=0.85, show_progress=False) 

13:35:33 - cmdstanpy - INFO - CmdStan start processing 
13:35:33 - cmdstanpy - INFO - CmdStan start processing 
13:35:33 - cmdstanpy - INFO - CmdStan done processing 
13:35:33 - cmdstanpy - WARNING - Some chains may have failed to converge. 
    Chain 1 had 157 divergent transitions (15.7%) 
    Chain 2 had 148 divergent transitions (14.8%) 
    Chain 3 had 208 divergent transitions (20.8%) 
    Chain 4 had 154 divergent transitions (15.4%) 
    Use function "diagnose()" to see further information. 

Plot chain histograms of estimated GEV parameters. 

stangev.gev_posterior(fit) 
plt.show() 
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Return level plot with return periods in logarithmic scale in the x axis. The blue shaded area gives 95% 
predictive uncertainty envelope for the return levels. 

stangev.gev_qplot(y, fit, maxp=1000) 
plt.title(f'Monthly maximas in ERA5, lat: {lat}, lon: {lon}') 
plt.show() 

 

Analysis on selected coordinates 

We can calculate selected return periods for any pixel or collection of pixels in the ERA5 data. Below 
we select some locations that are studied in RISKADAPT project. The same analyses will be extended 
to the future climate in the next phase. 

# lon, lat 
locations = { 
    'Trieste': [13.8, 45.63], 
    'Lake Polyfytos Bridge': [21.973889, 40.232778], 
    'Helsinki': [24.9375, 60.170833], 
    'Kontiolahti': [30.0, 62.8], 
} 
 
return_periods = [20] 
month = 8 
 
fig, axs = plt.subplots(2,2, figsize=(9, 9)) 
 
for i, l in enumerate(locations): 
    ax = axs.ravel()[i] 
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    lon, lat = locations[l] 
    y = era5['t2m'].interp(latitude=lat, longitude=lon).where(era5['time.m
onth']==month, drop=True) - 273.15 
    fit = stangev.gev_fit(y, quiet=True, show_progress=False) 
    rl_chain = stangev.gev_qpred(fit, yt = return_periods, return_chain=Tr
ue) 
    sns.histplot(rl_chain.values[:,0], bins=40, kde=True, stat='probabilit
y', ax=ax) 
    ax.set_xlabel(f'{l}') 
    ax.set_ylabel('') 
    ax.set_yticks([]) 
plt.suptitle((f'{calendar.month_name[month]} temperature maximum [°C],' 
              f'\n with return period of {return_periods[0]} years.' 
              '\nCurrent climate')) 
#axs[1,1].set_axis_off() 
plt.show() 
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The plots above show probability distributions of the estimated return levels of monthly maximum 
temperature in selected locations based on ERA5 monthly maxima. The figures show 20-year return 
period, so the estimated propability density for the maximum temperature to be observed at most 
every 20 years assuming the that climate stays the same as it has been during the years 1980-2019. 
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Annex 2. ERA5 Land examples 

Here we demonstrate the use of ERA5 Land data from the Copernicus service. 

We provide a script era5land_download.py to download the data for one location and month over 
years 1980-2019. 

Below, we use two locations related to RISKADAPT Pilots, Lake Polyfytos Bridge in Greece and Cattinara 
Hospital in Italy. 

import os 
import numpy as np 
import xarray as xr 
 
import matplotlib.pyplot as plt 
 
from glob import glob 
 
DATA = os.path.expanduser('~/DATA/RISKADAPT/') 
 
locations = { 
    'Lake Polyfytos Bridge': [21.973889, 40.232778], 
    'Cattinara Hospital Trieste': [13.826012, 45.634376], 
} 

Extreme precipitation at Lake Polyfytos 

First, we study extreme precipitation near Lake Polyfytos Bridge that is the subject of study in 
RISKADAPT Pilot 1. Data for August preciptation for years 1980-2019 have been downloaded with the 
utility era5land_download.py. 

file = DATA+'era5_land_1980-2019_August_tp_Polyfytos.nc' 
ds = xr.open_dataset(file) 
ds 

<xarray.Dataset> 
Dimensions:     (time: 1280, step: 24, latitude: 2, longitude: 2) 
Coordinates: 
    number      int64 ... 
  * time        (time) datetime64[ns] 1980-07-31 1980-08-01 ... 2019-08-31 
  * step        (step) timedelta64[ns] 01:00:00 02:00:00 ... 1 days 00:00:
00 
    surface     float64 ... 
  * latitude    (latitude) float64 40.3 40.2 
  * longitude   (longitude) float64 21.9 22.0 
    valid_time  (time, step) datetime64[ns] ... 
Data variables: 
    tp          (time, step, latitude, longitude) float32 ... 
Attributes: 
    GRIB_edition:            1 
    GRIB_centre:             ecmf 
    GRIB_centreDescription:  European Centre for Medium-Range Weather Fore
casts 
    GRIB_subCentre:          0 
    Conventions:             CF-1.7 
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    institution:             European Centre for Medium-Range Weather Fore
casts 
    history:                 2023-10-08T09:01 GRIB to CDM+CF via cfgrib-0.
9.1... 

The variable tp has total precipitation cumulated hourly, separately for each day. The unit is meters. 
We interpolate to given location and adjust the coordinates for easier processing. 

lon, lat = locations['Lake Polyfytos Bridge'] 
tp = ds['tp'].interp(longitude=lon, latitude=lat) 
 
tp = (tp.stack(z=('time', 'step')). 
       swap_dims({'z': 'valid_time'}). 
       drop(['z', 'number', 'surface', 'time', 'step']). 
       rename({'valid_time': 'time'})) 
tp 

<xarray.DataArray 'tp' (time: 30720)> 
array([        nan,         nan,         nan, ..., 1.29357e-05, 
       1.29357e-05,         nan]) 
Coordinates: 
  * time       (time) datetime64[ns] 1980-07-31T01:00:00 ... 2019-09-01 
    longitude  float64 21.97 
    latitude   float64 40.23 
Attributes: (12/30) 
    GRIB_paramId:                             228 
    GRIB_dataType:                            fc 
    GRIB_numberOfPoints:                      4 
    GRIB_typeOfLevel:                         surface 
    GRIB_stepUnits:                           1 
    GRIB_stepType:                            accum 
    ...                                       ... 
    GRIB_shortName:                           tp 
    GRIB_totalNumber:                         0 
    GRIB_units:                               m 
    long_name:                                Total precipitation 
    units:                                    m 
    standard_name:                            unknown 

(tp.where(tp['time.year']==2004)*1000).plot(marker='.') 
plt.grid() 
plt.show() 
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Sum the daily values for the selected month for each year and then take 24 hour differences to get 
tp24, which is the total precipitation for each previous 24 hours. Transform m to mm. 

tp24 = tp.groupby(tp['time.year']).cumsum() * 1000 
tp24.name = 'tp24' 
 
def tp24fun(ds): 
       time1 = ds.time[ds.time >= ds.time[0] + np.timedelta64(24, 'h')] 
       time2 = time1 - np.timedelta64(24, 'h') 
       out = xr.full_like(ds, fill_value=np.nan) 
       out.loc[dict(time=time1)] = (ds.sel(time=time1).values - 
                                    ds.sel(time=time2).values) 
       return out 
 
tp24 = tp24.groupby(tp24['time.year']).map(tp24fun) 
tp24 

<xarray.DataArray 'tp24' (time: 30720)> 
array([    nan,     nan,     nan, ..., 0.17789, 0.18867, 0.18651]) 
Coordinates: 
  * time       (time) datetime64[ns] 1980-07-31T01:00:00 ... 2019-09-01 
    longitude  float64 21.97 
    latitude   float64 40.23 
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tp24.where(tp24['time.year']==2004).plot(marker='.') 
plt.grid() 
plt.plot() 

[] 

 

And then we can calculate the maximum 24 hour precipitation for each year for the selected month. 

tp24.groupby('time.year').max().plot(marker='o') 
plt.grid() 
plt.show() 



D3.2 – EXTREME VALUE DISTRIBUTIONS FOR EUROPE – PRESENT CLIMATE 

    30  

 

Now we could proceed to extreme value analysis. 

Maximum wind speed near Cattinara Hospital 

The next example calculates maximum 10 meter wind speed interpolated to the location of Cattinara 
hospital in Trieste, Italy. We study the August maximum 10 meter wind speed. ERA5 stores the wind 
as u and v components. First, we need to calculate 10 meter wind speed from those and do similar 
coordinate manipulations as for the tp above. 

file = DATA+'era5_land_1980-2019_August_uv10_Trieste.nc' 
ds = xr.open_dataset(file) 
ds 

<xarray.Dataset> 
Dimensions:     (time: 1280, step: 24, latitude: 2, longitude: 2) 
Coordinates: 
    number      int64 ... 
  * time        (time) datetime64[ns] 1980-07-31 1980-08-01 ... 2019-08-31 
  * step        (step) timedelta64[ns] 01:00:00 02:00:00 ... 1 days 00:00:
00 
    surface     float64 ... 
  * latitude    (latitude) float64 45.7 45.6 
  * longitude   (longitude) float64 13.8 13.9 
    valid_time  (time, step) datetime64[ns] ... 
Data variables: 
    u10         (time, step, latitude, longitude) float32 ... 
    v10         (time, step, latitude, longitude) float32 ... 
Attributes: 



D3.2 – EXTREME VALUE DISTRIBUTIONS FOR EUROPE – PRESENT CLIMATE 

    31  

    GRIB_edition:            1 
    GRIB_centre:             ecmf 
    GRIB_centreDescription:  European Centre for Medium-Range Weather Fore
casts 
    GRIB_subCentre:          0 
    Conventions:             CF-1.7 
    institution:             European Centre for Medium-Range Weather Fore
casts 
    history:                 2023-10-09T14:26 GRIB to CDM+CF via cfgrib-0.
9.1... 

lon, lat = locations['Cattinara Hospital Trieste'] 
ds['ws10'] = np.sqrt(np.square(ds['u10']) + np.square(ds['v10'])) 
ds['ws10'].attrs = ds['u10'].attrs.copy()                                          
ds['ws10'].attrs['long_name'] = '10 metre wind speed' 
ws10 = ds['ws10'].interp(longitude=lon, latitude=lat).astype(np.float32) 
 
ws10 = (ws10.stack(z=('time', 'step')). 
       swap_dims({'z': 'valid_time'}). 
       drop(['z', 'number', 'surface', 'time', 'step']). 
       rename({'valid_time': 'time'})) 
ws10 

<xarray.DataArray 'ws10' (time: 30720)> 
array([    nan,     nan,     nan, ..., 1.88802, 1.86969,     nan], 
      dtype=float32) 
Coordinates: 
  * time       (time) datetime64[ns] 1980-07-31T01:00:00 ... 2019-09-01 
    longitude  float64 13.83 
    latitude   float64 45.63 
Attributes: (12/30) 
    GRIB_paramId:                             165 
    GRIB_dataType:                            fc 
    GRIB_numberOfPoints:                      4 
    GRIB_typeOfLevel:                         surface 
    GRIB_stepUnits:                           1 
    GRIB_stepType:                            instant 
    ...                                       ... 
    GRIB_shortName:                           10u 
    GRIB_totalNumber:                         0 
    GRIB_units:                               m s**-1 
    long_name:                                10 metre wind speed 
    units:                                    m s**-1 
    standard_name:                            unknown 

ws10.groupby('time.year').max().plot(marker='o') 
plt.title('Maximum August 10 m wind speed in Trieste') 
plt.grid() 
plt.show() 
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Annex 3. GPEX data 

This example uses Global Precipitation EXtremes dataset GPEX. This data was used for article: Extreme 
Precipitation Return Levels for Multiple Durations on a Global Scale, Gründemann et al., 2021. 
(https://doi.org/10.1016/j.jhydrol.2023.129558) 

The data set GPEX.nc can be downloaded from: 
https://opendap.4tu.nl/thredds/catalog/data2/fig/12764429/4/catalog.html. The data file contains 
global estimates of extreme precipitation using four extreme value methods (GEV, POT, Gumbel and 
MEV) for eight durations (3 hours - 10 days). 

See page at: https://data.4tu.nl/articles/_/12764429/4 for more details. 

import numpy as np 
import xarray as xr 
 
import matplotlib.pyplot as plt 
 
import geopandas as gpd 
import regionmask 
import cartopy.crs as ccrs 
from cartopy.io.img_tiles import OSM 
 
imagery = OSM(cache=True) 

/usr/local/share/venvs/sci/lib/python3.10/site-packages/cartopy/io/img_til
es.py:113: UserWarning: Cartopy created the following directory to cache G
oogleWTS tiles: /var/folders/8l/qwchy9rd09x6v46zs3_zbmxm0000gn/T/cartopy_c
ache_dir/OSM 
  warnings.warn( 

Open downloaded data set. The spatial resolution is 0.1°. 

ds = xr.open_dataset('~/DATA/GPEX/GPEX.nc') 
ds 

<xarray.Dataset> 
Dimensions:             (lat: 1480, lon: 3600, dur: 8, tr: 10, year: 38) 
Coordinates: 
  * lat                 (lat) float32 89.95 89.85 89.75 ... -57.75 -57.85 
-57.95 
  * lon                 (lon) float64 -179.9 -179.9 -179.8 ... 179.8 179.9 
179.9 
  * dur                 (dur) int32 3 6 12 24 48 72 120 240 
  * tr                  (tr) int32 2 5 10 20 39 50 100 200 500 1000 
  * year                (year) int32 0 1 2 3 4 5 6 7 ... 30 31 32 33 34 35 
36 37 
Data variables: (12/26) 
    gev_estimate        (lat, lon, dur, tr) float32 ... 
    pot_estimate        (lat, lon, dur, tr) float32 ... 
    mev_estimate        (lat, lon, dur, tr) float32 ... 
    gumbel_estimate     (lat, lon, dur, tr) float32 ... 
    observed_estimate   (lat, lon, dur, tr) float32 ... 
    gev_location        (lat, lon, dur) float32 ... 
    ...                  ... 
    gumbel_location     (lat, lon, dur) float32 ... 
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    gumbel_scale        (lat, lon, dur) float32 ... 
    annual_maximum      (lat, lon, dur, year) float32 ... 
    hydroyear           (lat, lon) float32 ... 
    running_parameter   (lat, lon) timedelta64[ns] ... 
    mask                (lat, lon) uint8 ... 
Attributes: 
    title:           GPEX 
    description:     Global Precipitation EXtremes dataset. This data was 
use... 
    acknowledgment:  Contains modified Multi-Source Weighted-Ensemble Prec
ipi... 
    authors:         Gaby Gründemann, Enrico Zorzetto, Hylke Beck, Marc Sc
hle... 
    date_created:    2021-08-25 
    creator_name:    Gaby Gründemann 
    creator_email:   g.j.gruendemann@tudelft.nl 
    institution:     Department of Water Management, Faculty of Civil Engi
nee... 
    conventions:     CF 1.7 

For illustration, we use a shape file for Haliacmon river drainage basin and select a rectangular area 
around the basin. 

shape = gpd.read_file('Drainage_basin/basin.shp') 
bb = shape.to_crs('EPSG:4326').bounds.values[0] 
 
bb = bb + [-0.1, -0.1, 0.1, 0.1] 
ds2 = ds.sel(lon=slice(bb[0], bb[2]), lat=slice(bb[3], bb[1])) 
 
shape.to_crs('EPSG:4326').bounds 

 minx miny maxx maxy 

0 20.776522 39.818271 21.959666 40.809015 

Plot with a background map. 

tr = 50 
dur = 6 
 
p0 = imagery.crs 
p1 = ccrs.PlateCarree() 
 
fig, ax = plt.subplots(1, 1, figsize=(7, 7),  subplot_kw={'projection': p0
}) 
ax.set_extent(np.r_[19.0, 24.0, 38, 41.5], crs=p1) 
 
ax.add_image(imagery, 8, interpolation='spline36') 
shape.to_crs(p1).boundary.plot(ax=ax, transform=p1) 
 
gev = ds2['gev_estimate'].sel(tr=tr, dur=dur) 
m = gev.plot.pcolormesh(x='lon', y='lat', 
                        transform=p1, ax=ax, alpha=0.5, 
                        cbar_kwargs={'shrink': 0.7}) 
plt.show() 
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Plot one return period for several event durations, dur [h]. 

tr = 50 
 
gev = ds2['gev_estimate'].sel(tr=tr) 
m = gev.plot.pcolormesh(x='lon', y='lat', col='dur', col_wrap=4, 
                        transform=p1, 
                        subplot_kws={'projection': p1}) 
plt.suptitle(f'{gev.tr.attrs.get("long_name")} = {gev.tr.values} [{gev.tr.
attrs.get("units")}]', y=1.02) 
 
for ax in m.axs.ravel(): 
    ax.set_extent(np.r_[bb[0], bb[2], bb[1], bb[3]], crs=p1) 
    shape.to_crs(p1).boundary.plot(ax=ax, transform=p1) 
 
plt.show() 
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IDF intensity - duration - frequency curves 

IDF curves can be used for various hydrological analyses. In GPEX data, intensity is calculated from 
precipitation and duration. The data has 10 return periods from 2 to 1000 years. Below, we mask the 
data to select only pixels for Heliacmon river basin. Then we calculate average IDF curves over the 
areas for all provided return periods. 

mask = regionmask.mask_geopandas(shape.to_crs('EPSG:4326'), 
                                 ds['lat'].values, 
                                 ds['lat'].values, 
                                 lon_name='lon', lat_name='lat') 

fig, ax = plt.subplots(1, 1, figsize=(5, 5),  subplot_kw={'projection': p1
}) 
ds['gev_estimate'].sel(tr=10, dur=6).where(mask==0, drop=True).plot(transf
orm=p1) 
shape.to_crs(p1).boundary.plot(ax=ax, transform=p1) 
plt.show() 
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plt.figure(figsize=(10, 5)) 
 
gevmean = ds['gev_estimate'].where(mask==0, drop=True).mean(dim=['lon', 'l
at']) 
(gevmean / gevmean['dur']).plot.line(x='dur') 
plt.ylabel('intensity [mm / h]') 
plt.grid() 
plt.title('IDF plot for Haliacmon river drainage basin') 
plt.show() 

 

 


